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Abstract—In this letter, motivated by the recent differen-
tial faster-than-Nyquist (DFTN) signaling concept, we propose
an improved 16-point double-ring star quadrature amplitude
modulation (QAM)-aided DFTN signaling transmission, which
allows us to attain a higher bandwidth efficiency as well as a
simple receiver based on noncoherent detection. We derive an
analytical error-rate bound for the proposed star-QAM DFTN
signaling in an uncoded scenario. The derived bound is used for
optimizing the star-QAM constellation for our DFTN signaling
in terms of error-rate performance in an uncoded scenario.
Our simulation results demonstrate that the proposed star-QAM
DFTN scheme outperforms its conventional phase-shift-keying-
based DFTN counterpart.

I. INTRODUCTION

THE concept of faster-than-Nyquist (FTN) signaling was
discovered in the 1970s [1, 2] and acts as a means of

increasing a transmission rate without expanding the band-
width. The symbol interval of FTN signaling T is set to
a value less than the first Nyquist criterion T0. One of the
main limitations imposed on FTN signaling is that the receiver
suffers from inter-symbol interference (ISI), which is specific
to FTN signaling. In order to combat this limitation, several
computationally efficient frequency-domain equalizers have
been developed [3–6], all of which rely on cyclic prefix
(CP)-assisted frequency-domain equalization (FDE), which
achieve a practically low detection complexity even in a highly
dispersive frequency-selective channel, in addition to FTN-
induced ISI.

In order to reduce the pilot overhead associated with channel
estimation at the receiver, an FTN pilot (FTNP) sequence
was employed in [6, 7], where efficient FTNP-based channel
estimation (CE) algorithms were developed in the frequency
domain. However, the benefit of such reduced pilot overhead is
achieved at the cost of additional complexity, which is imposed
by the iterative process at the receiver. More specifically,
the FTNP-based CE schemes [6, 7] still rely on the use
of pilot symbols. Most recently, in order to dispense with
CE at the receiver, differential FTN (DFTN) signaling was
proposed in [8], where differential phase-shift keying (DPSK)
is employed in the context of the conventional FTN signaling.
Although in general, noncoherent detection is possible only
for an ISI-free non-dispersive channel, noncoherent detection
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of ISI-contaminated DFTN signaling becomes realistic in [8],
by exploiting the fact that an FTN-specific ISI matrix is known
in advance of transmissions at the receiver.

The conventional differential star-quadrature amplitude
modulation (QAM) scheme typically exhibits a better perfor-
mance than the DPSK scheme [9, 10], and hence a similar
benefit is also expected in the DFTN signaling scenario.
However, it is an open issue to optimize a constellation of star-
QAM in DFTN signaling, unlike in the conventional Nyquist-
criterion-based scenario [9, 10]. This is because the optimum
star-QAM constellation in DFTN signaling may depend on the
bit-energy-to-noise ratio (Eb/N0) as well as the DFTN-specific
symbol packing ratio α = T/T0.

Against the above-mentioned backcloth, the novel contribu-
tions of this letter are as follows. We first propose an improved
DFTN signaling based on 16-point star-QAM in order to
enhance the bandwidth efficiency of the conventional BPSK-
modulated DFTN signaling scheme [8] while maintaining the
DFTN scheme’s fundamental benefits. We derive the analytical
error-rate bound of the proposed 16-point star-QAM-aided
DFTN signaling scheme in an uncoded scenario. The derived
bound is exploited for optimizing the 16-point star-QAM con-
stellation in the proposed scheme. Our analytical and numeri-
cal results demonstrate that the above-mentioned fundamental
benefits of the proposed star-QAM-aided DFTN signaling are
achievable. Furthermore, it is found that our scheme exhibits
an explicit advantage over the existing coherent counterpart,
especially in a rapidly time-varying channel.

II. SYSTEM MODEL OF STAR-QAM-AIDED DFTN
In this section, we present the system models of the conven-

tional Nyquist-criterion star-QAM-aided differential modula-
tion and our star-QAM-aided DFTN signaling. In this letter,
we consider a double-ring star-QAM having a constellation
size of 16, similar to [11]. The amplitudes of the inner and
outer rings are denoted by aL and aH , and γ = aH/aL is
referred to as the ring ratio.

A. The Conventional Star-QAM-Aided Differential Modula-
tion [10]

We first review the conventional star-QAM-aided differen-
tial modulation. At the transmitter, a 4N -length bit sequence
b = [b1, · · · , b4N ]T ∈ Z4N per block is differentially modu-
lated onto 16-star-QAM symbols s = [s0, · · · , sN ]T ∈ CN+1

as follows:

sk = akvk for 1 ≤ k ≤ N, (1)

where ak ∈ {aH , aL} is the amplitude of sk, which is
modulated by b4k. For example, we have ak = aL for b4k = 0,
and otherwise we have ak = aH .
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Furthermore, vk (|vk| = 1) corresponds to a differentially
modulated phase of sk, which is given by

vk = wkvk−1, (2)

and wk is an 8-PSK symbol, which is modulated based
on three bits, i.e., [b4k−3, b4k−2, b4k−1]. Note that the initial
amplitude and 8-PSK symbol are set to a0 = aL and v0 = 1,
respectively.

The differentially encoded star-QAM signals are transmitted
to the receiver over a frequency-flat Rayleigh fading channel.
The received symbols yk ∈ C (k = 0, · · · , N) is expressed as
follows:

yk = hksk + nk = hkakvk + nk, (3)

where hk ∈ C is the channel coefficient, and nk ∈ C is the
associated additive white Gaussian noise (AWGN) component,
which obeys a complex-valued Gaussian distribution having a
zero mean and a noise variance of N0. By assuming that two
consecutive channel coefficients remain constant, i.e., hk =
hk−1, the received signals yk of (3) are rewritten as

yk = hk−1akvk−1wk + nk =
ak
ak−1

yk−1wk + ñk, (4)

where we have an equivalent noise component of ñk =
−(ak/ak−1)nk−1wk + nk, which obeys a complex-valued
Gaussian distribution having a zero mean and a variance of
{(ak/ak−1)

2 + 1}N0. Note that ak/ak−1 of (4) has value 1,
γ, or 1/γ.

Having obtained the modified received signal model of (4),
four information bits [b4k−3, b4k−2, b4k−1, b4k] are estimated
by demodulating (ak, wk) without channel estimation, based
on the maximum likelihood (ML) criterion, as follows: [12]

(âk, ŵk) =

arg max
(ak,wk)

{ |akw∗
k + âk−1ŵ

∗
k−1|2

|ak|2 + |âk−1|2
−
(
|wk|2 + |ŵk−1|2

)}
,

(5)

where âk and ŵk are the estimated amplitude and phase, ak
is aL or aH , and w is an 8-PSK symbol and the equation
holds when Eb/N0 is fully large [12].

B. The Proposed Star-QAM-Aided DFTN Signaling

In the proposed transmitter, similar to the conventional
differential 16-star-QAM in Section II-A, 4N information bits
are modulated onto (N + 1)-length differential 16-star-QAM
symbols s. Then, a 2ν-length CP is added to the head of s, in
order to obtain (N + 2ν + 1)-length symbols s̃ ∈ CN+2ν+1.
Note that ν is assumed to be sufficiently longer than the
effective tap length induced by DFTN signaling. Here, the
effective tap length includes both the ISI effects, induced by
the FTN signaling and the frequency-flat channels, similar to
[13]. Then, the transmitted signals s̃(t) are generated by band-
limiting s̃ with the aid of an root raised cosine (RRC) filter
q(t) having a roll-off factor of β, as follows:

s̃(t) =
∑
n

s̃nq(t− nT ). (6)

Note that in this model, the Eb/N0 of the DFTN signaling
is the same as that of the conventional Nyquist-criterion-
based counterpart. By assuming a quasi-static frequency-flat
Rayleigh fading channel, the kth sampled symbol zk at the
receiver is given by

zk = h
∑
n

s̃ng((k − n)T ) + η(kT ), (7)

where we have g(t) =
∫
q(τ)q∗(τ − t)dτ and η(t) =∫

n(t)q∗(τ − t)dτ . Additionally, η(kT ) (k = 0, · · · , N + 2ν)
are the colored noise components, which have the relationship
E[η(kT )η(jT )] = N0g((k − j)T ). Here, E[·] denotes the
expectation operation.

Furthermore, by removing both the ν head and the last ν
symbols from the N + 2ν + 1 sampled symbol block, the
received block is obtained as follows:

ŷ = hGs+ η, (8)

where G ∈ R(N+1)×(N+1) is a circulant matrix that cor-
responds to the FTN-specific ISI effects. Moreover, G is
expressed by G = QTΛQ∗ with the aid of the eigenvalue de-
composition, where Q is a normalized discrete Fourier trans-
form (DFT) matrix whose kth row and lth column component
is (1/

√
N + 1) exp [−2πj(l − 1)(k − 1)/(N + 1)]. Hence,

by carrying out an inverse DFT operation on (4), we arrive
at the frequency-domain received signals of

ŷf = Q∗ŷ

= hΛQ∗s+Q∗η. (9)

Since the FTN-specific ISI matrix G is calculated by the
symbol packing ratio α and the roll-off factor of an RRC filter
β, G is accurately available at the receiver, versus requiring
estimation.

With the aid of the approximated noise-whitening minimum
mean-square error (MMSE) criterion [6], the estimates of z =
hs are calculated as follows:

ẑ = [ẑ0, · · · , ẑN ]T ∈ CN+1 (10)
= QTWŷf , (11)

where we have

W = ΛH

(
ΛΛH +

N0

Es
Φη

)−1

, (12)

and Es represents the symbol power. Furthermore, Φη =
diag (Φη[0], · · · ,Φη[N ]) is a diagonal matrix whose nth ele-
ment is

Φη[n] =
1

N + 1

N∑
l=0

N∑
m=0

g((l −m)T )exp

(
j
2π(l −m)n

N + 1

)
(0 ≤ n ≤ N). (13)

Finally, by substituting ẑk and ẑk−1 in (11) into yk and yk−1

in (4), the kth symbol s̃k is estimated with the aid of ML
detection.

III. ANALYTICAL ERROR-RATE BOUND

In [8], the equivalent signal-to-interference-pulse-noise ratio
(SINR) value of the received DFTN signals after MMSE-based
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FDE is derived. In [14], the analytical BER expression of the
differentially encoded 16-star-QAM scheme is given. Assisted
by these results, we herein derive the analytical error-rate
bound of our 16-QAM-aided DFTN signaling scheme.

The estimated 16-star-QAM-aided DFTN symbols ŝ are
given by [8]

ŝ = hQTWΛQ∗s+QTWQ∗η

= hΓss+ Γnη, (14)

where we have Γn = QTWQ∗ and Γs = ΓnG．More
specifically, the desired signals, the FTN-specific ISI, and the
AWGNs are represented, respectively, by sd = hΓds, sI =
h(Γs − Γd)s, and ην = Γnη, where Γd is a diagonal matrix
having diagonal elements of Γs. By considering E[|h|2] = 1
and E[ssH ] = IN+1, the average power of each component is
formulated as

Pd = tr
{
E[sdsHd ]

}
= tr

{
ΓdΓ

H
d

}
, (15)

PI = tr
{
E[sIsHI ]

}
= tr

{
|Γs|2 + |Γd|2 − ΓsΓ

H
d − ΓdΓ

H
s

}
, (16)

Pη = tr
{
E[ηνη

H
ν ]

}
= tr

{
ΓnRΓH

n

}
, (17)

where R = E[ηηH ], the ith row and jth column element of
which is given by N0g((l −m)T ). Hence, the average SINR
value of DFTN signaling after MMSE-FDE is given by

SINR =
Pd

PI + Pη
. (18)

Differential 16-star-QAM is divided into two differential
modulation schemes: two-level differential amplitude shift
keying (2-DASK) and 8-DPSK. In [14], in order to detect co-
herent Nyquist-criterion differentially encoded 16-star-QAM
symbols, a thresholding scheme, rather than ML detection,
was employed for detecting an amplitude ak. Two thresholding
values are set: ξL = 2/(1 + γ) and ξH = (1 + γ)/2. If
ξL ≤ |yk|/|yk−1| ≤ ξH , then the amplitude is estimated as
âk = âk−1, that is b4k = 0, and otherwise the amplitude is
estimated as âk ̸= âk−1, that is b4k = 1.

The analytical BER of differential 16-star-QAM is ex-
pressed as

P16starQAM =
1

4
P2-DASK +

3

4
P8-DPSK, (19)

where P2-DASK and P8-DPSK are the analytical BERs of 2-DASK
and 8-DPSK, respectively. Furthermore, letting the amplitude
of the nth symbol be cn, P2-DASK and P8-DPSK are formulated
as

P2-DASK =
1

2
+

1

4

∑
cn

∑
cn−1

ϵ(cn, cn−1)

[P (ξ = ξH |cn, cn−1)− P (ξ = ξL|cn, cn−1)], (20)

P8-DPSK =
2

3

[
F8-DPSK

(
ψ = −π

8

)
− F8-DPSK

(
ψ = −3π

8

)]
,

(21)

where

ϵ(cn, cn−1) =

{
1 (cn ̸= cn−1)
−1 (cn = cn−1).

(22)

P (ξ | cn, cn−1) =
1

2

{
1 +

ξ2 − ρ22/ρ
2
1√

(ξ2 + σ2
2/σ

2
1)− (2ξσ2/σ1)2

}
,

(23)

F8-DPSK(ψ) =
1

2

[
1 +

ψ

π
+

2

π

ρ sinψ√
1− ρ2 cos2 ψ

× tan−1

√
1 + ρ cosψ

1− ρ cosψ

]
. (24)

Furthermore, we have σ2
2/σ

2
1 = (c2n + 1/Γ), ρ =

cncn−1/[(c
2
n−1 + 1/Γ)(c2n + 1/Γ)]1/2, and Γ is the average

SINR value. Finally, the analytical BER of our proposed
differential 16-star-QAM-aided DFTN signaling is obtained
by substituting the SINR of (18) into Γ of (19)–(24).

IV. PERFORMANCE RESULTS

In this section, we provide our performance results for
16-star-QAM-aided DFTN signaling. The basic parameters
employed in our simulations are as follows. The block length
of DFTN symbols was set to N = 1024, and a frequency-flat
Rayleigh fading channel was assumed. The roll-off factor of
the RRC filter was maintained as β =0.3, and the CP length
was assumed to be 2ν = 20. Note that the constellation has
to be optimized, depending on the roll-off factor β employed.
Furthermore, ML detection was employed to calculate the sim-
ulated BER curves of the proposed DFTN signaling scheme.

Based on the derived analytical bound of the proposed
DFTN signaling, we optimized the ring ratio γ for each symbol
packing ratio α. We assumed the use of the thresholding
parameters ξL = 2/(1 + γ) and ξH = (1 + γ)/2, according
to [11]. Fig. 1(a) shows the relationship between ring ratio γ
and the BERs for an Eb/N0 of 20 dB. Symbol packing ratio
α was set to 0.7, 0.8, 0.9, or 1.0. Observe in Fig. 1(a) that the
optimum ring ratio γ changed, depending on symbol packing
ratio α. Furthermore, in Fig. 1(b), the optimum ring ratios γ
for symbol packing ratios of α = 0.7, 0.8, 0.9, and 1.0 were
plotted. As seen in Fig. 1(b), for the low Eb/N0s, the optimum
ring ratios change depending on symbol packing ratio α. For
the high Eb/N0s, such as Eb/N0 > 40 dB, the optimum ring
ratio converges to γ = 2.09 regardless of the α value. Note
that in the range of α < 0.8, the accuracy of the analytical
BER decreases, upon decreasing the α value, similar to [8].

In Fig. 2, we show the numerical results of the achievable
BER performance in the AWGN channel comparing the pro-
posed 16-star-QAM-aided DFTN scheme, the 16-star-QAM-
aided FTN scheme, the conventional 16-PSK-aided DFTN
scheme, and the conventional 16-PSK-aided FTN scheme.
Moreover, the ring ratio of 16-star-QAM was fixed to γ = 2.1,
and the symbol packing ratio was set as α = 0.9 or 0.8.
Observe in Fig. 2 that the proposed 16-star-QAM-aided DFTN
signaling scheme exhibited a 3-dB penalty over its coherent
counterpart, as expected. This is due to the noise-doubling
effects, which specifically depend on ring ratio γ. Also, the
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(a) BER at Eb/N0= 20 dB (b) Optimum ring ratio

Fig. 1. Achievable BER performance and optimum ring ratio γ of the pro-
posed 16-point star-QAM-aided DFTN signaling. A time-invariant frequency-
flat Rayleigh fading channel was considered; α is the symbol packing ratio.
(a) Achievable BER at the Eb/N0 of 20 dB for each α value; (b) ring ratio
optimized at each Eb/N0.

Fig. 2. Achievable BER performance of the coherent FTN and DFTN
schemes, which were modulated based on 16-star-QAM and 16-PSK. An
AWGN channel was considered; α is the symbol packing ratio.

proposed 16-star-QAM-aided DFTN signaling scheme outper-
formed the conventional 16-PSK-aided DFTN one in terms of
BER. Note that the performance gain owing to the constella-
tion optimization is on the order of a fraction of dB. However,
this is not marginal from the physical-layer perspective, since
this optimization can be carried out offline [15].

The above performance results assumed time-invariant
channels; next we investigate the effects of using time-varying
channels. In the time-varying scenario, the received signals
of (7) are modified to zk =

∑
n hnsng(k − nT ) + η(kT ),

where hn (n = 0, · · · , N + 2ν + 1) is the channel coef-
ficient at the nth sample, which is generated according to
E[hnh∗n+τ ] = J0(2πFdTτ), in which FdT is the normalized
Doppler frequency and J0 is the zero-order Bessel function of
the first kind. We assumed that, for coherent FTN schemes,
the channel coefficient was updated at the beginning of each

Fig. 3. Achievable BERs for the coherent FTN and DFTN signaling schemes
modulated based on 16-star-QAM and 16 PSK. A time-varying frequency-flat
Rayleigh fading channel was considered at an Eb/N0 of 40 dB. The symbol
packing ratio was set as α = 0.9, and the normalized Doppler frequency
(given in parentheses in the legend key) was set as FdTs = 1.0 × 10−6,
1.0× 10−5, or 1.0× 10−4.

block.1

Finally, as shown in Fig. 3, the effects of a block length on
the achievable BER performance in a time-varying channel
were investigated while considering an Eb/N0 of 40 dB. Also,
the block length N was varied from 26 to 212, while the
number of CP was maintained as 2ν = 20. The symbol
packing ratio was set as α = 0.9 and the maximum Doppler
frequency was given by 1 × 10−4, 1 × 10−5, and 1 × 10−6.
Observe in Fig. 3 that the BERs of the proposed 16-star-QAM-
aided DFTN signaling scheme remained unchanged regardless
of the block length, while those of the coherent counterpart
deteriorated upon increasing the block length.23

V. CONCLUSIONS

In this letter, we proposed a novel 16-point star-QAM-
aided DFTN signaling scheme in order to achieve a better
bandwidth efficiency without the pilot overhead associated
with channel estimation. The analytical error-rate bound was
derived based on the equivalent SINR value for an MMSE-
FDE-aided receiver. Furthermore, using this derived bound, a
16-point star-QAM constellation was optimized for our DFTN
signaling scheme in terms of the error-rate performance. Our
performance results revealed that the proposed DFTN scheme
achieved enhanced performance relative to the conventional
16-PSK-modulated DFTN scheme, as well as outperforming
its coherent counterparts, especially in a rapidly time-varying
channel.

1To expound a little further, for the sake of operating with a low α value,
such as α < 0.8, in the DFTN and FTN schemes, the use of powerful
channel-coding scheme is needed, as mentioned in [6, 13].

2Note that the proposed DFTN scheme is not directly applicable to
the frequency-selective channel, similar to the conventional differentially-
modulated systems.

3Note that while our DFTN scheme was optimized for the quasi-static chan-
nel, that employing the same parameters exhibited a good BER performance
in the time-varying channel.
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